Auxin Controls Gravitropic Setpoint Angle in Higher Plant Lateral Branches
نویسندگان
چکیده
منابع مشابه
Auxin Controls Gravitropic Setpoint Angle in Higher Plant Lateral Branches
Lateral branches in higher plants are often maintained at specific angles with respect to gravity, a quantity known as the gravitropic setpoint angle (GSA) [1]. Despite the importance of GSA control as a fundamental determinant of plant form, the mechanisms underlying gravity-dependent angled growth are not known. Here we address the central questions of how stable isotropic growth of a branch ...
متن کاملThe developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean
Root and shoot branches are major determinants of plant form and critical for the effective capture of resources below and above ground. These branches are often maintained at specific angles with respect to gravity, known as gravitropic set point angles (GSAs). We have previously shown that the mechanism permitting the maintenance of non-vertical GSAs is highly auxin-dependent and here we inve...
متن کاملThe Arabidopsis auxin-inducible gene ARGOS controls lateral organ size.
During plant development, the final size of an organ is regulated and determined by various developmental signals; however, the molecular mechanisms by which these signals are transduced and the mediators involved are largely unknown. Here, we show that ARGOS, a novel Arabidopsis gene that is highly induced by auxin, is involved in organ size control. Transgenic plants expressing sense or antis...
متن کاملLAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture.
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results ide...
متن کاملAn Auxin Transport Mechanism Restricts Positive Orthogravitropism in Lateral Roots
As soon as a seed germinates, plant growth relates to gravity to ensure that the root penetrates the soil and the shoot expands aerially. Whereas mechanisms of positive and negative orthogravitropism of primary roots and shoots are relatively well understood, lateral organs often show more complex growth behavior. Lateral roots (LRs) seemingly suppress positive gravitropic growth and show a def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Biology
سال: 2013
ISSN: 0960-9822
DOI: 10.1016/j.cub.2013.06.034